If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-208=0
a = 2; b = 1; c = -208;
Δ = b2-4ac
Δ = 12-4·2·(-208)
Δ = 1665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1665}=\sqrt{9*185}=\sqrt{9}*\sqrt{185}=3\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{185}}{2*2}=\frac{-1-3\sqrt{185}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{185}}{2*2}=\frac{-1+3\sqrt{185}}{4} $
| 2/5=-8/15x | | -14.4=-3.2+x/7 | | 4x+8=2x+7+2x+7+2x-20= | | -5+5/6x=20 | | -8.9=-2.5+w/4 | | X-50=-6x+104 | | -2x-13x-50=3x | | 3x=35x+20 | | X-10+4x=0 | | 10y+45=20 | | -8y-129=-3y+-9(-5+7y) | | D=4+2.5r | | 2/9m=72 | | 5(6x2+5x)-7(6x+5)=0 | | y^2-68y+256=0 | | 4=-16/4x+4 | | 5m2+0=0 | | 9(7+8c)+7c=-5c+231 | | 9(7+8c)+7c=-5c+c+231 | | 6x-16=62+4 | | -2(5-2x)+18=10x-40 | | 6(2x+1)+5x=3x+2 | | 7=7.25x | | b^2+15b=-50 | | 4-(-2z)=10 | | -1.2=v/7+16.3 | | 16=1/x*2 | | 30(t)=-2t3+25t2-82t+68 | | 2.9=r+5.7 | | 4q-(-2)=18 | | 1-3c=4 | | X^2-6x=-12x-256 |